
LASEK: LLM-Assisted Style Exploration Kit for Geospatial Data∗

Tarlan Bahadori
University of California, Riverside

Riverside, California
tbaha001@ucr.edu

Sai Sreekar Sarvepalli
University of California, Riverside

Riverside, California
ssarv003@ucr.edu

Ahmed Eldawy
University of California, Riverside

Riverside, California
eldawy@ucr.edu

ABSTRACT
Geospatial data visualization on a map is an essential tool for mod-
ern data exploration tools. However, these tools require users to
manually configure the visualization style including color scheme
and attribute selection, a process that is both complex and domain-
specific. Large Language Models (LLMs) provide an opportunity
to intelligently assist in styling based on the underlying data dis-
tribution and characteristics. This paper demonstrates LASEK, an
LLM-assisted visualization framework that automates attribute se-
lection and styling in large-scale spatio-temporal datasets. The
system leverages LLMs to determine which attributes should be
highlighted for visual distinction and even suggests how to integrate
them in styling options improving interpretability and efficiency.
We demonstrate our approach through interactive visualization
scenarios, showing how LLM-driven attribute selection enhances
clarity, reduces manual effort, and provides data-driven justifica-
tions for styling decisions.
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1 INTRODUCTION
We live in an era of data science and data-driven research. The
ubiquity of collected data results in wide availability of repositories
with hundreds of thousands of datasets. Studies show that about 60%
of these datasets have a geospatial component. There has been some
recent work to support scalable geospatial visualization [2, 4, 9].
However, these systems require the users to define the visualization
style, e.g., attribute colors, which is a tedious task for datasets with
tens or hundreds of attributes that the users are not familiar with.
This demonstration addresses a common challenge of how to define
appropriate styling for visualization that effectively communicates
insights within the data.
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This demo presents LASEK (LLM-Assisted Style Exploration Kit
for Geospatial Data), which extends Spark and Beast [2], to provide
scalable visualization for terabytes of geospatial data with various
input/output file formats. The approach of LASEK can be helpful
with both server-side rendering systems, e.g., UCR-Star [4] and
SedonaViz [9], and client-side rendering systems, e.g., OpenLayers
and Google Maps APIs. The proposed toolkit helps users navigate
large geospatial datasets that contain many attributes with vague
names to help users users identify which ones are necessary for
their analysis. The database community has explored visualization
recommendation [7, 8] but existing work focused on traditional
line plots and pie charts and not map visualization. Building on
this insight, LASEK addresses the complexities of spatio-temporal
data exploration and styling by integrating Large Language Models
(LLMs) to intelligently rank and filter attributes, ensuring users
focus only on relevant data. This reduces the time spent exploring
unnecessary attributes while improving computational efficiency.
By reducing dataset size, LASEK optimizes storage and rendering
time without sacrificing visualization quality. Additionally, LLM-
based styling ensures uniform color schemes and standardized
visual encodings, making it easier to interpret different datasets
across multiple use cases.

The data flow and main processing steps of LASEK can be seen
in figure 1. To optimize LLM usage costs, we’ve implemented a
two-step LLM call architecture that minimizes token count by trans-
ferring only essential information at each stage. Our goals for each
step can be summarized as follows:

• Step 1: Attribute Type Inference Since datasets are often
ingested from unstructured text formats, we first process a
data sample through the LLM to detect and parse complex
attribute formats such as datetime fields and geometry data,
generating an enhanced schema that enables proper data
interpretation.

• Step 2: Calculate Statistical Summaries As large-scale
datasets cannot be processed entirely by LLMs due to mem-
ory constraints, we generate comprehensive statistical sum-
maries including top-k most frequent values, min/max val-
ues, and variance metrics to provide meaningful context
for visualization decisions.

• Step 3: Attribute Recommendation This step integrates
user intent through either interactive natural language
prompts or the selection from the automated visualization-
worthy attributes based on statistical significance.

• Step 4: Stlying Generation The final step obtains styling
code from the LLM based on the selected attributes and
statistical patterns, then applies it to the entire dataset for
visualization.
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Figure 1: Overview of LASEK dataflow and processing

From a user perspective, the system offers a streamlined work-
flow for geospatial data visualization. After uploading their dataset
(supporting formats like CSV, GeoJSON, or Shapefile), users ac-
cess the data exploration and visualization interface with multiple
styling options. The targeted attribute suggestion tab allows users
to input natural language prompts that the LLM translates into au-
tomatic styling. Alternatively, the automated attribute suggestion
tab displays all dataset attributes with explanations, letting users
select any attribute for which the system generates appropriate
styling code based on its characteristics. All styling changes apply
immediately to the visualization, and users can iteratively refine
their results by trying different prompts or attributes until they
achieve their desired visualization.

Our objective is to enhance visualization capabilities through
LLMs and statistical integration. Specifically, this work introduces
the following key enhancements:

• Efficient Statistical Computation: Precomputed statisti-
cal summaries of attributes eliminate need for on-demand
computation, reducing query latency and data transmis-
sion.

• Attribute Type Inference: LLMs automatically identify
complex formats (datetime, geometry data, etc.) from small
data samples without manual specification.

• LLM-Driven Attribute Suggestion and Styling Gener-
ation: Automated attribute suggestions and styling code
generation based on user prompts, reducing manual effort
while ensuring visualization consistency.

2 SYSTEM DESIGN
2.1 Step 1: Attribute Type Inference
The first step of LASEK’s visualization pipeline is LLM-driven at-
tribute type inference. Modern data exploration systems often deal
with semi-structured data in text-based formats such as CSV and
JSON. Some attributes can be very important for visualization but
need to be parsed correctly, e.g., date/time and geometry attributes.
To address this challenge, LASEK extracts a representative sample
of the data and forwards it to the LLM with a prompt to identify
datetime and geometry attributes and their format. For datetime at-
tributes, it recognizes various formats such as ‘yyyy-mm-dd’ or ISO
formats. For geometry data, it recognizes common formats such as
Well-Known Text (WKT) and coordinate pair representations. The
LLM returns a structured JSON response mapping each attribute
to its inferred type and format specifics. The returned information
can be used to parse the attribute using standard libraries available
in JavaScript or other languages. This enhanced schema informa-
tion is stored to enable appropriate parsing logic and visualization
techniques without manual configuration.

2.2 Step 2: Statistical Analysis
In order for LLM to suggest attribute styles, it needs to have a
holistic look on the dataset. However, its memory is usually very
limited and the cost of LLMs increase with the number of tokens.
Thus, we need a way to summarize the data into a few tokens to
let the LLM understand the big picture. At the same time, this step
should be scalable to support large-scale data.

To achieve these goals, we developed amodule that pre-computes
necessary summaries to eliminate the need of transferring the en-
tire data. To reduce the computation overhead for big data, we
leveraged SparkSQL aggregate expressions to execute a single-pass
sophisticated query that computes aggregates for all attributes with
minimal overhead. We break down the aggregates into general
aggregates and specialized aggregates. General aggregates are com-
puted for all attributes and these include number of non-null values,
number of distinct values, top-k values, and their frequencies, which
we found to be effective in identifying categorical attributes, e.g.,
crime type. For efficiency, we approximate the number of distinct
values using HyperLogLog (HLL) method. In addition, depending
on the attribute type, we compute additional specialized aggregates.
For numerical values, we compute the range [min, max], average,
standard deviation, and summation, which are useful for deciding
gradient color schemes. For textual attributes, we compute the av-
erage text length which can help determine if it can be displayed
as a label. For datetime attributes, we compute the earliest and
latest dates which are helpful for adding range filters. Finally, for
geometric attributes, we compute the minimum bounding rectangle
(MBR), the distinct geometry types, e.g., points, lines, and polygons,
and the total number of points in all geometries. Even though the
number of aggregate functions might seem large, we utilize Spark-
SQL to compute all of them in one pass in a distributed query. We
found that the time of computing these summaries for about 50
attributes to be only double the time of calculating the summary
for a single geometry column.



2.3 Step 3a: Targeted Attribute Selection
In targeted mode, LASEK identifies the target attribute to visualize
and the style options based on a user-provided prompt such as
“Show different crime types with distinct colors” for a crime dataset.
It works by forwarding the user prompt, the enhanced schema,
and a dataset sample to LLM with instructions to identify the most
relevant attribute to use in visualization. The output a list of sug-
gestions in the form of (attribute, cue) pairs that can be used for
visualization. The cue is a free text description of how the attribute
can be used for styling. It is possible that the list contains only one
attribute if the prompt very clearly targets a specific attribute. The
user can either select one of these options or LASEK can just go
with the first option. The selected (attribute, cue) pair is forwarded
to the next step.

2.4 Step 3b: Automated Attribute Selection
In automated mode, the system autonomously selects visualization-
worthy attributes. This mode can be useful when the dataset con-
tains many attributes and the user is not sure what each of them
represents. First, we feed the LLM the enhanced schema and the
dataset sample and instruct it to recommend the most relevant
attributes for visualization styling. The LLM analyzes the attributes
and the sample data and comes up with a list of (attribute, cue)
pairs for the most relevant attributes for styling. For example, it
can choose the ‘population’ attribute with a cue of “Population is a
numeric attribute with significant variance. Use a graduated color
scheme.” The list of suggested attributes and their cues is displayed
to the user to select the most relevant one. The selected (attribute,
cue) pair is then forwarded to the next step.

2.5 Step 4: Style Generation
After an attribute is selected for visualization, whether with tar-
geted or automated mode, the system selects calculated statistical
summaries for this specific attribute and feeds it to the LLM through
a second call along with the attribute name and cue. While we could
send the statistics of all attributes in the first call in Step 3, this
two-step approach optimizes the cost of using LLM by minimizing
number of transferred tokens and reduces query latency. The LLM
then generates a tailored JSON styling object that can be used by
Beast and OpenLayers. For example, the style for “Crime Type”
that assigns a distinctive color for each type a categorical approach
for the “Crime Type" attribute that assigns distinctive colors to
different categories (red for theft, blue for battery, etc.). This styling
code is applied to the visualization, allowing users to gain insights
or iterate with different prompts as needed. We tried to directly
generate a styling function in JavaScript and it worked fine but
we chose to use a structured styling object for security reasons to
avoid directly running the code that the LLM generates.

3 DEMONSTRATION SCENARIOS
This section presents three demonstration scenarios that illustrate
the main steps of attribute type inference, attribute recommenda-
tion, and styling generation using the LLM-driven approach. For
this demonstration, we integrated the Google Gemini LLM into
Beast [2]. However, the architecture is designed to be flexible, al-
lowing other LLMs to be seamlessly incorporated. These examples

showcase how the system automatically selects relevant attributes
based on data samples and user intent, and suggests optimal styling
options based on computed statistical summaries. The datasets used
for these scenarios are: Chicago crimes and States-and-provinces,
downloaded from UCR-Star [4]. We will also have all UCR-Star
datasets available for users to further explore LASEK.

3.1 Scenario 1: Visualize Crimes from a Certain
Time Period

In this scenario, we will showcase the attribute type inference by
LLM, specifically, detecting datetime attributes in the dataset. Users
can then use the re-parsed schema to visualize crimes that took
place in a certain period.

(1) Attribute Type Inference: In this step, the audience will be
able to see the various datetime attributes detected by LLM along
with their formats, for example:
Date: MM/DD/YY HH:mm
UpdatedOn: M/D/YY HH:mm
Year: YYYY

(2) Automated Attribute Selection: LASEK will make the
second LLM call to detect the attributes to use for the visualization.
Since the schema contains multiple timestamp attributes, the user
will be given multiple attribute options to choose from to generate
the style.

(3) Styling Generation: After the audience makes the selection,
the third and final LLM call will take the user choice along with the
selected attribute statistics to generate the styling object accord-
ingly. For example, the user may choose to only visualize crimes
that took place between 01/01/2022 and 02/10/2022. The generated
style will hide all records outside this date range.

3.2 Scenario 2: States and Provinces Data
Exploration

This dataset contains 83 attributes, making it challenging for users
to identify the most relevant ones. By analyzing both a data sample
and the schema, the LLM promptly determines which attributes are
best suited for visualization. This data is available in a structured
Shapefile format so it does not require attribute type inference.

(1) Attribute Recommendation: In this scenario, we use the
automated attribute selection method which identifies several inter-
esting attributes for visualization. For instance, attributes like map-
color13 are identified as categorical, while those like name, which
mostly contain unique values, are more appropriate for labels rather
than coloring. Likewise, continuous numerical attributes such as
area_sqkm are flagged as suitable for a graduated color scheme.
For each attribute, the LLM generates an explanation detailing its
classification and recommending the optimal styling approach. This
explanation is then used as a styling cue in the subsequent gener-
ation phase. Users can choose any attribute for which they want
to generate styling; for example, they might opt to color regions
based on area_sqkm while using name as labels.

(2) Style Generation: At this point, the LLM combines the
selected attribute’s statistical summary with the styling cue to gen-
erate a custom styling function, which is then applied to visualize
the input data.
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(a) Step 1: LASEK sends an initial prompt.
LLM receives a sample and the schema in-
formation, and recommends best attribute
to use and styling type.
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(b) Step 2: User selects the recommended
attribute. LLM receives statistics of the at-
tribute and generates styling function.

(c) Step 3: Resulting visualization, where
countries that have a higher population ap-
pear darker.

Figure 2: An example scenario of using LASEK for visualizing countries based on population. The user inputs prompt “Color
countries with gradient scheme based on population.” The LLM determines which attribute is best to use and generates
appropriate styling function.

3.3 Scenario 3: Urban Crime Analysis
This scenario demonstrates how the audience can refine the style
by customizing the visualization prompt.

(1) TargetedAttribute Selection:The audience enters a prompt
such as “Show top 5 most frequent crime types with distinct colors”.
The LLM infers from the schema and sample data that the focus
should be on the Primary Type attribute.

(2) Style Recommendation: After receiving the summary of
Primary Type attribute, the system has already detected this at-
tribute as categorical and will create a styling function where the
top 5 frequent crime categories appear with distinct colors.

(3) Interactive Customization: A user might later refine the
visualization with a natural language prompt such as, “Show the
theft incident with larger red circles”, prompting the system to
adjust the style dynamically.

These scenarios clearly illustrate a two-step process: first, the
system intelligently selects relevant attributes based on a data sam-
ple and schema, combined with user intent; second, it provides
styling recommendations by analyzing the statistical summaries
of the selected attributes. This two-step process optimizes number
of tokens that are sent to the LLM and reduces query latency. Nat-
ural language prompts further enable interactive customization,
simplifying the visualization process for non-expert users.
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